
This article was downloaded by: [Hossein Arsham]
On: 31 July 2013, At: 11:03
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal for Computational Methods in
Engineering Science and Mechanics
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/ucme20

Monte Carlo Solution to Find Input Parameters in
Systems Design Problems
Hossein Arsham a
a The Carey Business School, The Johns Hopkins University , Baltimore , MD , USA
Published online: 06 May 2013.

To cite this article: Hossein Arsham (2013) Monte Carlo Solution to Find Input Parameters in Systems Design
Problems, International Journal for Computational Methods in Engineering Science and Mechanics, 14:4, 343-353, DOI:
10.1080/15502287.2012.756957

To link to this article:  http://dx.doi.org/10.1080/15502287.2012.756957

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/ucme20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/15502287.2012.756957
http://dx.doi.org/10.1080/15502287.2012.756957
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


International Journal for Computational Methods in Engineering Science and Mechanics, 14:343–353, 2013
Copyright c© Taylor & Francis Group, LLC
ISSN: 1550-2287 print / 1550-2295 online
DOI: 10.1080/15502287.2012.756957

Monte Carlo Solution to Find Input Parameters in Systems
Design Problems

Hossein Arsham
The Carey Business School, The Johns Hopkins University, Baltimore, MD, USA

Most engineering system designs, such as product, process, and
service design, involve a framework for arriving at a target value
for a set of experiments. This paper considers a stochastic approx-
imation algorithm for estimating the controllable input parameter
within a desired accuracy, given a target value for the performance
function. Two different problems, what-if and goal-seeking prob-
lems, are explained and defined in an auxiliary simulation model,
which represents a local response surface model in terms of a poly-
nomial. A method of constructing this polynomial by a single run
simulation is explained. An algorithm is given to select the design
parameter for the local response surface model. Finally, the mean
time to failure (MTTF) of a reliability subsystem is computed and
compared with its known analytical MTTF value for validation
purposes.

Keywords System design and simulation, Parameter setting design,
Reliability, Production design, Goal seeking problem,
Discrete event simulation

1. INTRODUCTION
Simulation continues to be the primary method by which en-

gineers obtain information about analysis of complex stochastic
systems, such as production assembly lines, flexible manufac-
turing systems, and reliability systems. Almost all stochastic
system performance evaluations can be formulated as an esti-
mation of an expected value. Consider a system with continuous
parameter

v ∈ V ⊆ R, where V is an open interval. Let

J(v) = EY|v [Z(Y)] (1)

be the steady-state expected performance measure, where Y is
a random vector with known probability density function (pdf),
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f(y;v) depends on v, and Z is the performance measure. For
example, in a reliability system, J(v) might be the mean time
to failure; Z is the lifetime of a system; Y is the lifetime of the
components; and v might be the components’ mean lifetimes.
In general, v is the shape or scale parameter of the underlying
pdf.

In systems analysis, we resort to simulation when Z is either
unknown or is too complicated to calculate analytically. Before
proceeding further, we distinguish between discrete event static
systems (DESS) and discrete event dynamic systems (DEDS).
Dynamic systems evolve over time; static systems do not evolve
over time. Examples of dynamic systems are the queueing sys-
tems; examples of static systems are reliability systems. Note
that while in DESS Y is a multidimensional vector, in DEDS Y
represents a stochastic process.

Simulation is needed to estimate J(v) for most DESS and
DEDS. The principal strength of simulation is its flexibility as
a systems analysis tool for highly complex systems.

In discrete event systems, Monte Carlo simulation is usually
needed to estimate J(v) for a given value v = v0. By the law of
large numbers

Ĵ(v0) = 1/n
n∑

i=1

Z (yi), (2)

converges to the true value, where yi, i = 1, 2, . . ., n are inde-
pendent, identically distributed random vector realizations of Y
from f (y; v0), and n is the number of independent replications.
The numerical result based on (2) is only a point estimate for
J(v) at v = v0. The numerical result based on (2) is a solution to
a system analysis: Given the underlying pdf with a particular pa-
rameter value v0, estimate the output function J(v0). The direct
problem is widely used in stochastic systems analysis. Now we
pose the system design problem: Given a target output value of
the system and a parameterized pdf family, find an input value
for the parameter which generates such an output. The solution
to the design problem has potential application in stochastic
systems analysis and design. Mathematical formulation of the
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344 H. ARSHAM

design problem is as follows:

Given τ, find v ∈ V ⊆ R subject to J(v) = τ, where

J(v) = EY|v [Z (Y)] =
∫

Z (y) f (y; v) dy, (3)

Z: Rm → R is a system performance measure
Y ∈ Rm is a random vector (or a truncated stochastic process)

with pdf f (y; v)

The design problem is essentially backwards. The output is
given, but the input must be determined. This is easiest to ap-
preciate when a designer wants to match experimental data in
order to obtain some basic parameters. The designer simulates
the process numerically and obtains an approximation for that
same output. The goal is to match the numerical and experimen-
tal results as closely as possible by varying the values of input
parameters in the numerical simulation. Analyzing this, clearly
the output is there, and it is the input quantity that needs to be
determined. The most obvious difficulty in solving the design
problem is that one cannot simply calculate a straightforward
solution and be done. Since the output must be set by varying
the input, an iterative method of solution is implied. In the case
when v is any controllable or uncontrollable parameter, the de-
signer is interested in estimating J(v) for a small change in v =
v0 to v = v0 + δv0. This is the so-called what-if problem, which
is a direct problem. However, when v is a controllable input, the
decision maker may be interested in the goal-seeking problem;
i.e., “What value of input parameter v will achieve a desired
c the output value J(v) = J0?” While the what-if problem has
been extensively studied, the goal-seeking simulation problem
is relatively new. Design interpolation based on regression mod-
els provides an indirect approach to solve the design problem.
In this treatment, one simulates the system for many differ-
ent values of v = v0, and then one approximates the response
surface function J(v). Finally, the fitted function is used to in-
terpolate to obtain the unknown parameter v. Since the shape
of J(v) function is unknown, this approach is tedious, time-
consuming, and costly. Moreover, in random environments, the
fitted model might have unstable estimates for the coefficients.
The only information available about J(v) is general in na-
ture; for example, continuity, differentiability, invertability, and
so on.

The simulation models based on (2), although simpler than
the real-world system, are still a very complex way of relating
input (v) to output J(v). Sometimes a simpler analytic model
may be used as an auxiliary to the simulation model. This aux-
iliary model is often referred to as a local response surface
model (known also as a metamodel [15]). Local response sur-
face models may have different goals: model simplification and
interpretation [13], optimization [2, 3, 4, 31], what-if analy-
sis [1, 6], and generalization to models of the same type. The

following polynomial model can be used as an auxiliary model.

J (v) = J (v0) + δvJ′ (v0) + (δv)2 J′′ (v0) /2 + · · · , (4)

where δv = v-v0 and the primes denote derivatives. This local
response surface model approximates J(v) for small δv. To esti-
mate J(v) in the neighborhood of v0 by a linear function, we need
to estimate the nominal J(v) based on (2) and its first derivative.
Traditionally, this derivative is estimated by crude Monte Carlo;
i.e., finite difference, which requires rerunning the simulation
model. Methods which yield enhanced efficiency and accuracy
in estimating, at little additional cost, are of great value.

There are few ways to obtain efficiently the derivatives of the
output with respect to an input parameter [4]. The most straight-
forward method is the Score Function (SF). The SF approach
[19, 26, 27] is the major method for estimating the performance
measure and its derivative, while observing only a single sam-
ple path from the underlying system [26]. The basic idea of
SF is that the derivative of the performance function, J′(v), is
expressed as expectation with respect to the same distribution
as the performance measure itself.

This paper treats the design problem as a simulation (as op-
posed to regression) problem. By this approach, we are able to
apply variance reduction techniques (VRT) used in the direct
problem. Specifically, we embed a stochastic version of New-
ton’s method in a recursive algorithm to solve the stochastic
equation J(v) = J for v, given J at a nominal value v0.

The explicit use of a linear local response surface model is
the target parameter design: Given a desired value J = J(v), find
the prerequisite input parameter v.

Most engineering design methods essentially involve a
framework for arriving at a target value for product, process,
and service attributes, through a set of experiments which in-
clude Monte Carlo experiments. To solve the product design
problem, we will restrict our model to the first order expansion.
For a given J(v), the estimated δv using (4) is

δ̂v = [J(v) − Ĵ(v0)]/Ĵ′(v0), (5)

provided that the denominator in (5) does not vanish for any v0

in interval V.
The remainder of this article is divided into six sections.

The next section contains the construction of a polynomial local
response surface model using estimated derivatives of J(v). Sec-
tion 3 deals with the target setting problem in design of a system.
This is followed by construction of an accuracy measure in Sec-
tion 4. Section 5 develops an iterative solution algorithm for the
parameter selection problem. Section 6 illustrates the proposed
method using a reliability system. Finally, Section 7 provides
some concluding remarks and ideas for further research and
extensions.
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INPUT PARAMETERS IN SYSTEMS DESIGN PROBLEMS 345

2. CONSTRUCTION OF POLYNOMIAL LOCAL
RESPONSE SURFACE MODEL BY SINGLE-RUN
SIMULATION
Simulation models, although simpler than real-world sys-

tems, are still very complex tools for relating input parameters
(v) to performance measures J(v). Sometimes a simple analyti-
cal model may be used as an auxiliary to the simulation model.
This auxiliary local response surface model is often referred to
as a metamodel [15]. In this treatment, we have to simulate the
system for some different values of (v) and then use a “goodness-
of-fit” regression. We fit a response surface to these data. Clearly,
coupling the simulation model with the Score Function method
enhances the efficiency of constructing a local response surface
model. A local response surface model can also be constructed
by using sensitivities in a Taylor expansion of J(v) in the neigh-
borhood of v = v0. The resulting local response surface model
can be used for characterization (such as increasing/decreasing,
and convexity/concavity) of the response surface.

Let

J(v) = EY|v[Z(Y)] =
∫

Z(y)f(y; v)dy, where (6)

Z is a system performance measure,
Y ∈ Rm is a random vector (or a truncated stochastic process)

with pdf f (y; v) as the steady-state performance measure,
then

J′(v) =
∫

[Z(y).f(y; v)]′dy, (7)

where the prime (′) denotes the derivative with respect to v. Note
that, despite the fact that y depends on v, only the function Z.f is
subject to differentiation with respect to v. From (7) it follows
that

J′ (v) =
∫

Z (y) f′ (y; v) dy = EY|v [Z (Y) .S] , (8)

where S = f′(y;v)/f(y;v) is the Score Function (in simulation
literature it is also known as Likelihood Ratio). Differentiation
is with respect to v. This is subject to the assumptions that the
differentiation and the integration operators are interchangeable,
f′(y;v) exists, and f(y;v) is positive for all v ∈ V, where V is an
open interval. A necessary and sufficient condition for the inter-
changeability used above is that there must be no discontinuity
in the distribution with position depending on the parameter v
[4]. Similarly, the second derivative is

J′′(v) =
∫

[Z(Y)S′f(y; v) + Z(Y)Sf′(y; v)]dy

= EY|v[Z(Y).H] (9)

where

H = S′ + S2. (10)

In the multidimensional case, the gradient and Hessian of
J(v) could be obtained in a straightforward manner by gener-
alizing these results [6]. The estimator for the first and second
derivatives based on (8) and (9) are given by:

Ĵ′(v) =
n∑

i=1

Z(yi)S(yi; v)/n (11)

Ĵ′′(v) =
n∑

i=1

Z(yi)H(yi; v)/n (12)

where

S (yi; v) = f′(yi; v)/f (yi; v) (13)

and

H (yi; v) = f′′(yi; v)/f (yi; v) . (14)

Notice that both (11) and (12) estimators are evaluated at v =
v0, and yi’s are the same n independent replications used in (2)
for estimating the nominal performance J(v0); therefore they
are quite efficient in terms of computation cost. Estimates ob-
tained by using (11) and (12) are unbiased, consistent, and they
converge to the true values in the sense of the mean squared
error [6]. The estimated gradient can also be used in solving
optimization problems by simulation [2]. Other applications of
sensitivity information include stability analysis [5].

The following subsection provides a descriptive presentation
of other approaches to gradient estimations. For the full algo-
rithmic implementations and their interrelationships; see [5] and
references therein.

2.1 Derivative Estimation
In the design, analysis, and operation of Discrete Event

Systems (DES), any information about the derivative dJ(v)/dv,
is useful to both engineers and managers. The following ap-
proaches avoid any numerical problems associated with the
finite-differencing ratio as an approximation to the derivative;
they are based on a single simulation run, and the methods have
the potential for real-time applications.

Finite difference approximation: Kiefer and Wolfowitz [18]
proposed a finite difference approximation to the derivative. One
version of the Kiefer-Wolfowitz (K-W) technique uses two-
sided finite differences. The first fact to notice about the K-
W estimate is that it requires 2N simulation runs, where N is
the dimension of vector parameter v. If the decision maker is
interested in gradient estimation with respect to each of the
components of v, then 2N simulations must be run for each
component of v. This is inefficient. The second fact is that it
may have a very poor variance, and it may result in numerical
calculation difficulties.

Simultaneous perturbation methods: The simultaneous per-
turbation stochastic approximation (SPSA) algorithm intro-
duced by Spall [29, 30] has attracted considerable attention.
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346 H. ARSHAM

There has recently been much interest in recursive optimiza-
tion algorithms that rely on measurements of only the objective
function to be optimized, not requiring direct measurements of
the gradient of the objective function. Such algorithms have
the advantage of not requiring detailed modeling information
describing the relationship between the parameters to be opti-
mized and the objective function. For example, many systems
involving complex simulations or human beings are difficult to
model, and could potentially benefit from such an optimization
approach. The SPSA algorithm operates in the same framework
as the above Kiefer-Wolfowitz methods, but has the strong ad-
vantage of requiring a much lower number of simulation runs to
obtain the same quality of result. The essential feature of SPSA,
which accounts for its power and relative ease of use in diffi-
cult multivariate optimization problems, is the underlying gra-
dient approximation that requires only TWO objective function
measurements, regardless of the dimension of the optimization
problem (one variation of basic SPSA uses only ONE objective
function measurement per iteration). The underlying theory for
SPSA shows that the N-fold savings in simulation runs per it-
eration (per gradient approximation) translates directly into an
N-fold savings in the number of simulations to achieve a given
quality of solution to the optimization problem. In other words,
the K-W method and SPSA method take the same number of
iterations to converge to the answer, despite the N-fold savings
in objective function measurements (e.g., simulation runs) per
iteration in SPSA.

SPSA can be seriously limited by, for example, the stability
constraints of the system; e.g., traffic intensity must remain
positive but less than one for steady-state sensitivity estimation
[3].

Perturbation analysis: Perturbation analysis (PA) [10, 16]
computes (roughly) what simulations would have produced, had
v been changed by a “small” amount, without actually making
this change. The intuitive idea behind PA is that a sample path
constructed using v is frequently structurally very similar to the
sample path using the perturbed v. There is a large amount of
information that is the same for both of them. It is wasteful to
throw this information away and to start the simulation from
scratch with the perturbed v. In PA, moreover, we can let the
change approach zero to obtain a derivative estimator without
numerical problems. We are interested in the effect of a param-
eter change on the performance measure. However, we would
like to realize this change by keeping the order of events exactly
the same. The perturbations will be so small that only the du-
ration, not the order, of the states will be affected. This effect
should be observed in three successive stages:

Step 1: How does a change in the value of a parameter vary the
sample duration related to that parameter?

Step 2: How does the change in the individual sample duration
reflect itself as a change in a subsequent particular sample
realization?

Step 3: Finally, what is the relationship between the variation
of the sample realization and its expected value?

Harmonic analysis: Another strategy for estimating the gradi-
ent simulation is based on the frequency domain method, which
differs from the time domain experiments in that the input pa-
rameters are deterministically varied in sinusoidal patterns dur-
ing the simulation run, as opposed to being kept fixed as in the
time domain runs. The range of possible values for each input
factor should be identified. Then the values of each input factor,
within its defined range, should be changed during a simulation
run. In time series analysis, t is the time index. In simulation,
however, t is not necessarily the simulation clock time. Rather, t
is a variable of the model, which keeps track of certain statistics
during each run. For example, to generate the inter-arrival times
in a queueing simulation, t might be the variable that counts
customer arrivals.

Frequency domain simulation experiments identify the sig-
nificant terms of the polynomial that approximate the relation-
ship between the simulation output and the inputs. Clearly, the
number of simulation runs required to identify the important
terms by this approach is much smaller than those of the other
alternatives, and the difference becomes even more conspicuous
as the number of parameters increases.

Some additional remarks on the various approaches: Using
the score function (SF) method, the gradient can be estimated
simultaneously, at any number of different parameter values, in
a single-run simulation. The basic idea is that the gradient of the
performance measure function, J′(v), is expressed as an expec-
tation with respect to the same distribution as the performance
measure function itself. Therefore, the sensitivity information
can be obtained with little computational (not simulation) cost,
while estimating the performance measure. It is known that the
crude form of the SF estimator suffers from the problem of linear
growth in its variance as the simulation run increases. However,
in the steady-state simulation, the variance can be controlled by
run length. Furthermore, information about the variance may be
incorporated into the simulation algorithm. A recent flurry of
activity has attempted to improve the accuracy of SF estimates.
Under regenerative conditions, the estimator can easily be mod-
ified to alleviate the problem of linear growth, yet the magnitude
of the variance may be large for queueing systems with heavy
traffic intensity. The heuristic idea is to treat each component of
the system (e.g., each queue) separately, which synchronously
assumes that individual components have “local” regenerative
cycles. This approach is promising, since the estimator remains
unbiased and efficient, while the global regenerative cycle is
very long.

Now we look at the general (non-regenerative) case. In this
case, any simulation will give a biased estimator of the gradi-
ent, as simulations are necessarily finite. If n (the length of the
simulation) is large enough, this bias is negligible. However,
as noted earlier, the variance of the SF sensitivity estimator in-
creases with increase in n; thus a crude SF estimator is not even
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INPUT PARAMETERS IN SYSTEMS DESIGN PROBLEMS 347

approximately consistent. There are several ways to attack this
problem. Most of the variations in an estimator come from the
score function. The variation is especially high when all past
inputs contribute to the performance and the scores from all are
included. When one uses batch means, the variation is reduced
by keeping the length of the batch small.

A second way is to reduce the variance of the score to such
an extent that we can use simulations long enough to effectively
eliminate the bias. This is the most promising approach. The
variance may be reduced further by using the standard variance
reduction techniques (VRT), such as importance sampling. Fi-
nally, we can simply use a large number of iid replications of
the simulation.

PA and SF (or LR) can be unified [4]. Further comparison
of the PA and SF approaches reveals several interesting differ-
ences. Both approaches require an interchange of expectation
and differentiation. However, the conditions for this interchange
in PA depend heavily on the nature of the problem, and must
be verified for each application, which is not the case in SF.
Therefore, in general, it is easier to satisfy SF unbiased condi-
tions. PA assumes that the order of events in the perturbed path
is the same as the order in the nominal path, for a small enough
change in v, allowing the computation of the sensitivity of the
sample performance for a particular simulation. For example, if
the performance measure is the mean number of customers in a
busy period, the PA estimate of the gradient with respect to any
parameter is zero! The number of customers per busy period
will not change if the order of events does not change.

In terms of ease of implementation, PA estimators may re-
quire considerable analytical work on the part of algorithm
developer, with some “customization” for each application,
whereas SF has the advantage of remaining a general definable
algorithm whenever it can be applied.

Perhaps the most important criterion for comparison lies
in the question of accuracy of an estimator, typically mea-
sured through its variance. If an estimator is strongly consis-
tent, its variance is gradually reduced over time and ultimately
approaches zero. The speed with which this happens may be ex-
tremely important. Since, in practice, decisions normally have
to be made in a limited time, an estimator whose variance de-
creases fast is highly desirable. In general, when PA does provide
unbiased estimators, the variance of these estimators is small.
PA fully exploits the structure of DES and their state dynamics
by extracting the needed information from the observed sample
path, whereas SF requires no knowledge of the system other than
the inputs and the outputs. Therefore, when using SF methods,
variance reduction is necessary. The question is whether or not
the variance can be reduced enough to make the SF estimator
useful in all situations to which it can be applied. The answer is
certainly yes. Using the standard variance reduction techniques
can help, but the most dramatic variance reduction (VR) occurs
using new methods of VR, such as conditioning, which is shown
numerically to have a mean squared error that is essentially the
same as that of PA.

FIG. 1. (a) Parameter perturbation via perturbation analysis approach. (b)
Parameter perturbation via likelihood ratio approach.

Estimating system performance for several scenarios via sim-
ulation generally requires a separate simulation run for each
scenario. In some very special cases (to prevent confusion, in
this paragraph we use random variable X instead of Y), such as
the exponential density f(x; v) = ve−vx, one could have obtained
the perturbed estimate using Perturbation Analysis directly as
follows. Clearly, one can generate random variate Y by using
the following inverse transformation:

Xi = (1/v) Ln (1/Ui)

where Ln is the natural logarithm and Ui is a random num-
ber distributed uniformly [0,1]. In the case of perturbed v, the
counterpart realization using the same Ui is

Xi = [1/(v + δv)]Ln (1/Ui) .

Clearly, this single-run approach is limited, since the inverse
transformation is not always available in closed form. Figures
1a and 1b illustrate the Likelihood Ratio and Perturbation Anal-
ysis Approach, respectively. Since the Perturbation Analysis
Approach has this serious limitation, we presented Score Func-
tion (Likelihood Ratio) using a single-sample path, as shown
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348 H. ARSHAM

in Figure 1b. The rationalization is that the generated random
X(v) is roughly representative of X with pdf of f(x;v). However,
each of these random observations could have also hypostati-
cally come from f(x; v + δv). The factor score function weighs
the gradient according this phenomenon; i.e., working in the
same probability space as the nominal simulation.

3. TARGET-SETTING PROBLEM IN DESIGN
Most engineering system designs [13, 27], such as product,

process, and service design, involve a framework for arriving
at a target value for a set of experiments, which may include
Monte Carlo experiments. A random quality loss function L(Zi)
for a given system can be expanded in the neighborhood of the
target value τ as follows:

L(Zi) = L(τ ) + (Zi − τ )L′(τ ) + (Zi − τ )2L′′(τ )/2 + · · · (15)

It can be shown that L(Zi) converges in mean squared error
if | Zi− τ | < 1 and derivatives are finite. Since the optimal
loss is zero at τ , Eq. (15) reduces to the following quadratic
approximation

L(Zi) = K(Zi − τ )2 (16)

In (16), K is some constant that can be determined in terms of
the customer’s tolerance limit (τ − δv), which suggests that the
product performs unsatisfactorily when Zi slips below this limit.
Given that the cost to customer is A dollars, then K = A/δv2.
Without loss of generality, for simplicity let K = 1.

The goal of parameter design is to choose the setting of the
design parameter v that minimizes the average loss (the risk
function). The risk function R(τ ) is the expected value of the
loss function, which can be shown as:

R(τ ) = E {L (Zi)} = (J − τ )2 + Var (Zi) , (17)

This risk function measures the average loss due to a product
performance that is proportional to the square of the deviation
from the target value τ , as shown in Figure 2. A parabolic
representation estimates the quality loss, expressed monetarily,
which results when quality characteristics deviate from the tar-
get values. The cost of this deviation increases quadratically as
the characteristic moves farther from the target value. The ac-
ceptance range is between J(L) and J(U). Below the lower limit,
the product is rejected; above the upper limit, the product must
be reworked.

The parabolic curve shown in Figure 2 represents the Taguchi
loss function. From the curve, you can interpret that the amount
of loss is minimum for the target (or nominal) value; as you
deviate from the target, the amount of loss increases, even if
you are within the specified limits of the process.

The non-adjustable variational noise; i.e.,

Var(Zi|v) = Var(Zi), (18)

is a measure of variation among products. However, the role
of product design is to reduce the (J − τ )2 part of risk, which

is our interest in this paper. Note that all estimates involved in
computing δv based on (5); i.e., in

δ̂v = [J(v) − Ĵ(v0)]/Ĵ′(v0) (19)

are computed simultaneously from a single-run simulation of the
nominal system (v = v0). This was achieved by transforming all
probability space to the nominal one. Note that, to estimate the
derivative, we do not need to rerun the simulation. Estimating
the derivatives adds only moderate computational cost to the
base simulation.

4. ACCURACY OF THE ESTIMATE
In the design problem, input parameter is random, while the

output is fixed and given as a target value. Upon estimating
the input parameter, we must provide a measure, such as a
confidence interval, to reflect the precision of the estimate. To
construct a confidence interval for δv using the estimator (19),
let

Ai = J(v) − Z(yi; v0), (20)

Bi = Z(yi; v0)S(yi; v0) (21)

and denote

A =
∑

Ai/n, and B =
∑

Bi/n; (22)

Then

S2 = S2
11 − 2v̂ S12 + [v̂]2 S22, (23)

where

S11 =
∑

(Ai − A)2 / (n − 1) ,

S22 =
∑

(Bi − B)2 / (n − 1) , (24)

and

S12 =
∑

(Ai − A) (Bi − B) / (n − 1) . (25)

An exact 100% (1 − α) confidence interval for δv is given
by

|δv − v|
P[n1/2 - - - - - - - - - - ≤ tn−1, 1−α/2] ≥ 1 − α,

S/B
(26)

where tn-1,1 − α/2 is the 100 (1 − α/2) percentile of Student’s t
distribution with (n-1) degrees of freedom [20].

5. A RECURSIVE SOLUTION ALGORITHM
The solution to the design problem is a solution of the

stochastic equation J(v) = J, which we assume lies in some
bounded open interval V. The problem is to solve this stochastic
equation by a suitable experimental design to ensure conver-
gence as δv approaches zero. The following is a Robbins-Monro
algorithm [24], which is a root-finding procedure for functions
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FIG. 2. Tolerance concept in target design.

whose exact values are not known but are observed with noise.
It involves placing experiment j+1 according to the outcome of
experiment j immediately preceding it. That is,

vj+1 = vj + dj[τ − Ĵ(vj)]/Ĵ′(vj), (27)

where dj is any sequence of positive numbers satisfying the
following conditions:

∞∑
j=1

dj = ∞, (28)

and

∞∑
j=1

d2
j < ∞, (29)

The first condition is a necessary condition for the conver-
gence δv to approach zero, while the second condition asymp-
totically dampens the effect of the simulation random errors
[12, 19]. These conditions are satisfied, for example, by the har-
monic sequence dj = 1/j. With this choice, the rate of reduction
of di is very high initially but may reduce to very small steps as
we approach the root. Since simulation is partly statistical data
generation, one performs simulation experimentation in order
to generate “good” data. Instead, of classical dj = a/(a + j) with
a = 1, we have performed some pilot-runs for integer values of
1 ≤ a ≤ 10, and found that for a = 9 one gets considerable sav-
ing in number of iterations. Therefore, we have used the better
choice, dj = 9/(9 + j), for the application presented in the latter
section. However, as always, one must be careful in generalizing
any results, since we have used specific applications.

Pilot-Runs: To estimate by simulation, the number of sim-
ulation runs (n) is critical. The confidence level of simulation
output drawn from a set of simulation runs depends on the size
of data set. The larger the number of runs, the higher is the asso-
ciated confidence. However, more simulation runs also require

more effort and resources for large systems. Thus, the main goal
must be in finding the smallest number of simulation runs that
will provide the desirable confidence. Since the needed statis-
tics for number of simulation runs is not available from existing
database, a pilot simulation is needed.

For large enough pilot-runs (n), say over 30 (to invoke the
Central Limit Theorem), the simplest number of runs determi-
nate is:

[(Zα/2)2 S2]/�2
1

where �1 is the desirable absolute error, which is the half-length
of the confidence interval with 100(1 − α)% confidence interval,
where Z is the critical value of a standard normal distribution.
S2 is the variance obtained from the pilot-run. One may use
the following sample size determinate for a desirable relative
error �2 in%, which requires an estimate of the coefficient of
variation (C.V. in%) from a pilot-run with n over 30:

[(Zα/2)2 (C.V.)2]/�2
2

The aim of applying either is to improve your pilot estimates at
feasible costs.

Usually, when modelers choose a DES approach, they often
model the system as an open loop or nearly open loop system,
making the system behave as if there where no superior agent
controlling the whole production/service/ process. Closing the
loops, as shown in Figure 3, should be an elemental task that
a simulation modeler should take care of, even if the scope
does not involve doing it. There must be awareness of system
behavior, particularly if it is known that the system is under
human decisionmaking processes/activities.

The inverse simulation algorithm is based on an iterative
method using differentiation and a feedback structure as shown
by Figure 3.

Since the adjustments are made in proportion to the recent
value, we must be sure that the results remain finite. This requires
that J′(v) does not vanish for v ∈ V, where V is an open interval.
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To prevent excessive over-correction, we assume further that
the solution lies in some finite interval V. Under these not
unreasonable conditions, this algorithm will converge in mean
square; moreover, it is an almost sure convergence. For some
generalizations and studies concerning speed of convergence
and acceleration techniques, see [14]. Finally, as in Newton’s
root-finding method [11, 12], it is impossible to assert that the
method converges for just any initial v = v0, even though J′(v)
may satisfy the Lipschitz condition over V. The function f(x)
satisfies the Lipschitz condition on [a, b] for finite realnumbers
a, and b, if for some real constant L, and for all x, y ∈ [a, b],

|f(x) − f(y)| ≤ L|x − y|
Intuitively, a Lipschitz continuous function is limited in how

fast it can change: for every pair of points on the graph of this
function, the absolute value of the slope of the line connecting
them is no greater than a definite real number; this bound is
called the function’s “Lipschitz constant.” For example, J(v) =
v1/3 with an initial guess of x = 1. These numbers are growing
(in absolute value) instead of converging. In fact, we have

vn = (−1)n 2n−1

Hence the sequence fails to converge. However, it is clear
that there is a root at v = 0. Notice that at v = 0 the derivative
is undefined. Although is it Lipschitz continuous, the derivative
is unbounded at the origin; see also Pintér [23].

ALGORITHM

Step 0: INPUTS
τ = Desired output
j = Iteration number
vj = Controllable input parameter v
n = Sample size
U = Desired upper limit for absolute increment

u = vj+1 − vj

α = A desired significance level

Step 1: INITIALIZATION
Set j = 1
Set vj = v0

Step 2: ESTIMATIONS
J(vj) using (2)
J′(vj) using (9)

Step 3: COMPUTATIONS
u = 9[τ − Ĵ(vj)]/[(9 + j) Ĵ′(vj)]
If|u| < U
Construct 100(1 − α)% confidence interval for v using (20)
Stop.
Otherwise
set vj+1 = vj + u and j → j+1

Step 4: RESET: Reset the seeds of random number generators
to their initial values. Go to step 2.

Note that, by resetting the seeds to their initial values, we
are using the Common Random Variate [2, 26] approach as a
variance reduction technique.

6. DESIGN OF A RELIABILITY SUBSYSTEM
For most complex reliability systems, the performance mea-

sures, such as mean time to failure (MTTF), are not available
in analytical form. We resort to Monte Carlo Simulation (MCS)
to estimate MTTF function from a family of single-parameter
density functions of the components’ life with specific value for
the parameter. The purpose of this section is to solve the design
problem that deals with the calculation of the components’ life
parameters (such as MTTF) of a homogeneous subsystem, given
a desired target MTTF for the system. A stochastic approxima-
tion algorithm is used to estimate the necessary controllable
input parameter within a desired range of accuracy. The po-
tential effectiveness is demonstrated by simulating a reliability
system with a known analytical solution.

Consider a coherent reliability sub-system consists of four
homogeneous elements; i.e., manufactured by an identical pro-
cess, components having independent random lifetimes Y1, Y2,
Y3, and Y4, which are distributed exponentially with rates v =
v0 = 0.5.

The first two and the last two elements are in series, while
these two series, each with two components, are in parallel, as
shown in Figure 4.

The system lifetime is Z (Y1,Y2,Y3,Y4; v0) = max [min
(Y3,Y4), min (Y1,Y2)]. It is readily seen that the theoretical
expected lifetime of this system is J(v0) = 3/(4 v0), [7]. Now we
apply our results to compute a necessary value for v to obtain a
particular value for J(v), say J(v) = 2. For this reliability system,
the underlying probability density function is:

f(y; v) = v4exp
(
−v

∑
yi

)
, i = 1, 2, 3, 4., (30)

The Score Function is

S(y) = f′(y; v)/f (y; v) = 4/v −
∑

yi, i = 1, 2, 3, 4,

(31)

FIG. 3. System simulation with a feedback loop.
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FIG. 4. A reliability subsystem.

H(y) = f′′ (y; v)/f (y; v)

=
[

v2
(∑

yi

)2
− 8v

(∑
yi

)
+ 12

]/
v2,

i = 1, 2, 3, 4. (32)

The estimated average lifetime and its derivative for the nom-
inal system (v = v0 = 0.5) based on (2) and (9) are

J(v0) =
∑

max[min (Y3,j, Y4,j), min(Y1,j, Y2,j)]/n, (33)

and

J′(v0) =
∑

max[min (Y3,j, Y4,j), min(Y1,j, Y2,j)]. S(Yi,j)/n,

(34)

J′′(v0) =
∑

max[min(Y3,j, Y4,j), min(Y1,j, Y2,j)]. H(Yi,j)/n,

(35)

respectively, where Yi,j is the jth observation for the ith com-
ponent (i = 1, 2, 3, 4). We have performed a Monte Carlo ex-
periment for this system by generating n = 10000 independent
replications using SIMSCRIPT II.5 [9] random number streams
1 through 4 to generate exponential variates Y1, Y2, Y3, Y4,
respectively, on a PC. The estimated performance is J(0.5) =
1.5024, with a standard error of 0.0348. The first and second
derivative estimates are −3.0933 and 12.1177 with standard
errors of 0.1126 and 1.3321, respectively.

A Quadratic Metamodel: The response surface approxima-
tion in the neighborhood v = 0.5 is:

J(v)=1.5024 + (v − 0.5)(−3.0933) + (v − 0.5)2(12.1177)/2

+ · · · ≈ 6.0589v2 − 9.1522v + 4.5638 (36)

A numerical comparison based on direct simulation and local
response surface model (36) is given in Table 1. The relative
error as presented is the difference between the metamodel and
the analytical values. Notice that the largest error in Table 1
is 0.33%, which could be reduced by either more accurate es-
timates of the derivatives and/or using a higher-order Taylor
expansion. A comparison of the errors indicates that the errors
are smaller and more stable in the direction of increasing v. This
behavior is partly due to the fact that lifetimes are exponentially
distributed with variance 1/v. Therefore, increasing v causes less
variance than the nominal system (with v = 0.50).

Now assume that the manufacturer wants to improve the
average lifetime of the system to J(v) = τ = 2. To achieve this
goal, we have set v0 = 0.5 and U = 0.0001 in the proposed
algorithm. The numerical results are tabulated in Table 2.

The estimated input parameter to achieve the output J(v) =
τ = 2 is 0.375. A 90% confidence interval based on this estimate
using (20) is:

P[0.374 ≤ v ≤ 0.377] ≥ 0.90, (37)

Comparing the theoretical value v0 = 0.3750, obtained from
J(v) = 3/(4v0) = 2, with our computational value suggests
that the results based on the proposed algorithm are quite
satisfactory. In fact, running this system with v = 0.375 and
n = 10000, we obtained an estimated MTTF of J(v) = 2.0000.
Hence the discrepancy in the estimated input parameter by this
algorithm must be considered as a pure random error, which
can be reduced by increasing n. The metamodel (36) could also
be applied to J(v) = 2 to estimate the desirable v. Solving the
resulting quadratic metamodel equation, the relevant root is
v = 0.3725. This result is an inferior estimate for v compared

TABLE 1
A second-order polynomial local response surface model and direct simulation

v Analytic Simulation Metamodel Abs. error(%)

0.40 1.8750 1.8780 1.8723 0.14
0.42 1.7857 1.7885 1.7887 0.17
0.44 1.7045 1.7072 1.7098 0.31
0.46 1.6304 1.6330 1.6359 0.33
0.48 1.5625 1.5650 1.5667 0.27
0.50 1.5000 1.5024 1.5024 0.16
0.52 1.4423 1.4446 1.4430 0.05
0.54 1.3889 1.3911 1.3884 0.04
0.56 1.3393 1.3414 1.3386 0.05
0.58 1.2931 1.2951 1.2937 0.05
0.60 1.2500 1.2520 1.2537 0.30

Note: Nominal values are in italics.

D
ow

nl
oa

de
d 

by
 [

H
os

se
in

 A
rs

ha
m

] 
at

 1
1:

03
 3

1 
Ju

ly
 2

01
3 



352 H. ARSHAM

TABLE 2
Iterative decision parameter estimate for the reliability system

(1) Iteration number j (4) Estimated derivative
(2) Fixed input vj (5) Change in vj

(3) Estimated MTTF (6) New input parameter vj+1

(1) (2) (3) (4) (5) (6)

1 0.5000 1.5024 −2.9598 −0.1513 0.349
2 0.3487 2.1544 −6.0862 −0.0208 0.369
3 0.3694 2.0333 −5.4217 +0.0046 0.374
4 0.3740 2.0083 −5.2888 +0.0011 0.375

with the iterative method, although the accuracy of the latter
comes with greater computational cost.

7. CONCLUSIONS AND SOME DIRECTIONS FOR
FUTURE RESEARCH
Conventional approaches to simulation involve finding the

response of a system to a particular input or disturbance. Inverse
simulation reverses this and attempts to find the control input
required, achieving a particular response. An inverse simulation
method is introduced to be used in the analysis and design
of systems. The methodology is presented in the context of a
reliability system application. Section 6 includes a presentation
of a solution algorithm for the inverse simulation and issues
of numerical stability and accuracy. The methodology includes
an iterative method based on differentiation of the performance
measure and use of feedback structures for generation of an
inverse model based on a stochastic version of Newton’s method.
Almost all discrete event systems’ simulation computation can
be formulated as an estimation of an expected value of the
system performance measure, which is a function of an input
parameter of the underlying probability density function. In
the ordinary system simulation, this input parameter must be
known in advance to estimate the output of the system. From the
designer’s point of view, the input parameters can be classified as
controllable and uncontrollable [6]. The influential controllable
input can be recognized by factor screening methods [22]. In
this paper, we considered the design problem: “What should
be the controllable input parameter value to achieve a desired
output value?”

As an alternative to other product design and development
methods, the techniques introduced in this paper should be wel-
comed by the systems designers, Ulrich and Eppinger (32).

The approach used in this study was:

1. To estimate the derivative of the output function with respect
to the input parameter for the nominal system by a single-run
and on-line simulation;

2. To use this estimated derivative in a Taylor’s expansion of
the output function in the neighborhood of the parameter;
and finally,

3. To use a recursive algorithm based on the Taylor’s expansion
to estimate the necessary controllable input parameter value
within a desired accuracy.

Under some mild and reasonable conditions, the algorithm con-
verges to the desired solution with probability 1. The efficiency
of the proposed algorithm in terms of accuracy is tested using a
reliability product design with satisfactory results. The approach
may have major implications for simulation modelers and prac-
titioners in terms of time and cost savings. As always, since this
experiment was done on these specific numerical examples, one
should be careful in making any other generalizations.

This paper introduced the general concepts of inverse simu-
lation. An effective solution algorithm for inverse simulation is
presented from first principles. The impact of the proposed in-
verse simulation method in conveying real understanding about
the discrete event properties of the systems is now made avail-
able. The inverse simulation method is also found to be of value
for the validation and control of complex discrete event simula-
tion models with numerical stability and desirable accuracy.

The proposed inverse simulation techniques can also be ap-
plied as a measuring tool and decision procedure for the valida-
tion of simulation models. In the course of future research:

1. We expect to introduce other efficient variance reduction
techniques (VRT). The Common Random Variates as a VRT
are already embedded in the algorithm. Notice that since

E [S]=E [Lnf]′ =
∫

[Lnf]′ fdx=
∫

f′dx=
[∫

fdx

]′
= 0.

(38)

We can express the gradient in terms of covariance between
Z and S

J′(v) = Cov [Z (Y) , S] = E [ZS] − E [Z] E [S] . (39)

and

J′(v) = E [Z (Y) S] + αE [S] (40)
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where α could be the optimal linear control. Note also that
(6) can be written as:

J′(v) =
∫

Z(y)f′(y; v)dy

=
∫

Z(y)[f′(y; v)/ϕ(y; v)]ϕ(y; v)dy. (41)

The best choice for ϕ is the one proportional to Z(y) f′(y; v).
This minimizes the variance of J′(v); however, this optimal
ϕ depends on the performance function Z(y), which is not
known in advance for most cases. One may use the empir-
ical version of Z(y) f′(y; v). We recommend a pilot run to
study the effectiveness of these and other variance reduction
techniques before implementing them.

2. We expect to extend our methodology to higher-order Tay-
lor’s expansion. We believe that there is a tradeoff between
number of iterations, sample size, and the order of Taylor’s
expansion. Clearly, estimating the second derivative requires
a larger sample size n, but fewer iterations are required to
achieve the same accuracy.

3. We also expect to extend our methodology to the design
problems with two or more unknown parameters by con-
sidering two or more relevant outputs to ensure uniqueness.
By this generalization, we could construct a linear system
of stochastic equations to be solved simultaneously by mul-
tidimensional versions of the stochastic approximation pro-
posed in [8, 26] as well as the Newton method [28] using the
second-order derivatives (e.g., Hessian).

4. The algorithms in this paper are presented in English-like,
step-by-step format to facilitate implementation in a variety
of operating systems and computers, thus improving porta-
bility. However, there is a need to develop an expert system
that makes the algorithms more practically applicable to sim-
ulation in system design [8].
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